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Abstract. Heteroepitaxy and host materials physics as addressed via semiconductor
heterostructure fields are considered within the framework of the elasticity-based,S-correlated,
theory of misfit-induced superstructures (MISs) and the derived continuity conditions which
apply through the heterointerfaces. This enables us to optimize the choice of the host materials
of the heterostructure and to gain more insight into the in-heterostructure values of the phys-
ical parameters involved in the theory. As an application, we concentrate (i) on the elastic
properties (elastic constant) of the host materials of two polytype heterostructures, namely
CdTe/Cd1−xZnxTe/ZnTe and CdTe/Cd1−xMnxTe/MnTe and (ii) on the optimization of the
composition of the intermediate alloy layer. This enables us to calculate the in-heterostructure
value of the elastic properties of the zinc-blende phase of MnTe.

1. Introduction

A comprehensive study of heteroepitaxy problems as addressed by modern growth
techniques implies the following.

(i) A good understanding of the physics involved in the growth process. This is related
to the heterointerface physics as different atomic species interact together at the early stages
of the growth sequence, followed by the formation of the crystalline phases associated with
the selected host materials and characterized by different lattice parameters. The consequent
lattice misfit may be taken up by interface strains up to a critical layer thickness beyond
which extended defects may appear as dislocations. The choice of the host materials indeed
plays a dominant role in the interface problem. However, in applied physics, it is the
application aimed at which mainly determines the host material choice; for example, the
development of a high-temperature electronics and high-temperature devices leads us to
select SiC- or GaN-based heterostructures. Having chosen the host materials, one may
think of improving the heterostructure quality by applying different processings: among
these, the insertion of an intermediate alloy layer or the incorporation of impurities may
improve the lattice matching and also the homogeneity of the system with respect to, e.g.,
its elastic properties. These processings may be selected on the basis of continuity criteria
involving parameters relevant to the interface problem, which interests us here. Within this
framework, one can guess that the elasticity theory lies at the very heart of this problem.
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(ii) A good knowledge of the relevant properties of the host materials—not only the bulk
properties but also the in-heterostructure properties as these bulk features may be modified
by the heterostructure formation.

In what follows, we develop a strategy which enables us to investigate, at the same
time and by using a self-consistent procedure, (i) growth physics, through the optimization
of the heterointerface quality and system homogeneity, and (ii) the physics of the materials
involved in the heterostructure.

The bulk-grown phase of MnTe exhibits the hexagonal NiAs crystal structure [1].
However, recent modern growth techniques such as molecular beam epitaxy (MBE) have
shown that it is possible to stabilize the zinc-blende phase of MnTe [2]. This latter
is characterized by a quite different band gap [3]: 3.18 eV (in the near ultraviolet)
instead of 1.3 eV (in the near infrared) for the hexagonal phase. This new finding has
renewed the interest in this material as belonging to wide-gap semiconductor family able to
provide carrier confinement in semiconductor-based quantum structures for optoelectronic
applications at short wavelengths.

In the case of MnTe, structural, magnetic and electronic properties of the zinc-
blende phase have been investigated theoretically [3] through spin-polarized total energy
calculations. However, few studies have been devoted to the determination of the elastic
properties of the zinc-blende phase of MnTe when alloyed with other materials. These
properties are indeed relevant to growth experiments of this material on different substrates.
In [4], the elastic constants of Cd1−xMnxTe (0 6 x 6 52) and Cd0.52Zn0.48Te have been
determined at 296 K and atmospheric pressure. The lattice parameter of the alloy is, in both
cases, smaller than that of CdTe. Thus, one may expect a stiffening of the elastic constants
for the alloy, with respect to CdTe. This is the case for Zn-based alloy while the opposite
trend is observed for Mn-based alloy.

The elastic properties are macroscopic features which are introduced by the elasticity
theory of crystals: this corresponds to the wavelength limit to which the ultrasonic exp-
erimental probe belongs. This is to say that, in this case, it is a large part of the sample (of
the order of magnitude of the wavelength) which is monitored and the measured behaviour
corresponds to the extended part where chemically different zinc-blende phases, as well
as their heterointerfaces, may coexist: these are indeed CdTe-based alloys and MnTe or
ZnTe phases. The existence of the alloy-stabilized zinc-blende phase of MnTe has been
demonstrated in [4]. The existence of such different phases involves necessarily interfacial
problems. Consequently, one must face the important problem of the optimization of the
heterointerfaces with respect to different parameters and in first place with respect to alloy
composition.

Facing the need to know the elastic properties of the zinc-blende phase of MnTe,
alloyed with other materials, we have considered this problem from the point of view
of the formation of the heterointerfaces and of their optimization. We have discussed the
opportunity of considering the interface problem for the alloy-stabilized phase of MnTe.
Moreover, the interface problem is addressed by modern growth experiments in which
heterostructures, constituted of materials having different lattice parameters, are made. This
gives strained heterostructures for layer thickness smaller than the critical thicknesshc

while extended interface defects (misfit dislocations) may appear beyondhc. The vital
problem in this field is to obtain heterostructures with high interface quality. To do so,
different techniques such as the insertion of (i) strained layer superlattices [5] (SLSs), (ii)
a single strained interlayer [6] (SIL), and (iii) a transitional layer introduced in order to
reach a gradual matching of geometric parameters through the heterostructure, have been
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tried. Examples of the third method exist for the GaSb/GaAs system where the growth of a
GaAs1−xSbx alloy epilayer on GaAs has been carried out by MBE [7–9]. In [10], we have
demonstrated that this may be an efficient method for optimizing the interface quality with
respect to not only geometric factors but also elastic factors which are relevant to interface
defect formation.

For zinc-blende MnTe, we are also concerned by the heterointerface problem not only
because of the alloy-stabilized nature of the zinc-blende phase, but also because of its
incorporation in several heterostructures [2] as (i) a thick epilayer of MnTe grown on CdTe
substrate or (ii) a MnTe/CdTe/MnTe single quantum well. For both systems, (i) the problem
of the existence of a Cd1−xMnxTe alloy intermediate layer due to interfacial mixing and (ii)
the incorporation of such an alloy as a transitional layer to improve the interface quality
are worth analysing. This implies that in such heterosystems, two heterointerfaces must be
considered, namely Cd1−xMnxTe/CdTe and Cd1−xMnxTe/MnTe.

In what follows, we aim to optimize the choice of the composition of the alloy with
respect to parameters relevant to growth experiments, which involves geometric and elastic
properties of the growing phases. We will carry out the optimization self-consistently with
respect to (i) the alloy composition and (ii) the elastic properties. We present the method
which we use to realize such a project. Then, we apply it to zinc-blende MnTe and ZnTe-
based heterostructures.

2. Method

Let us briefly recall the main points of the theory, as more details are given elsewhere
[10]. Heterostructure growth raises several problems due, among other factors, to the use
of lattice-mismatched host materials in building up a heterostructure. This use is imposed
by the reduced number of host materials fulfilling the lattice-matching conditions. These
lattice-mismatched heterostructures can be grown with essentially no misfit dislocation (MD)
generation if the layer thickness is smaller than the layer critical thicknesshc. In this case,
the lattice mismatch is totally accommodated by uniform lattice strains. These strains
stabilize the heterointerface created by the growth experiment and, consequently, correlated
chemical (the nature of the interface planes, alloying, intermixing) and geometric features
(such as misfit-induced superstructure, MIS) establish at these interfaces. This correlation
has been demonstrated [9] for GaAs1−xSbx/GaAs: surface reconstructions of the alloy layer
are rather GaSb-surface-like forx > 0.8 and GaAs-surface-like forx 6 0.5. Therefore,
a good strategy is to assess our study on the basis of a physical model which describes
properly these MISs. As we will demonstrate, this physical model states that the super-unit
cell (MIS) which accommodates the lattices of two interacting host layers is determined by
the mismatch (i) of geometric features such as the lattice parameters [11] and (ii) of elastic
constant parameters as a consequence of the application of the elasticity theory [12]. Within
the framework of this theory, we may identify theS-factor, i.e. the elastic constant–density
ratio S = Cij/ρ, as an important parameter to be considered. The elasticity theory equations
to which we are referring [12] are

∂2u

∂t2
= C11

ρ

∂exx

∂x
+ C12

ρ

(
∂eyy

∂x
+ ∂ezz

∂x

)
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ρ

(
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∂y
+ ∂ezx
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)
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whereu is the x-component of the displacement,ρ is the density, theCij are the elastic
constants, and theeσσ ′ are the strain components(σ, σ ′ = x, y or z). Similar equations
for y and z can be deduced from equation (1). These equations may be considered as
the signature of strain-induced lattice dynamics, as the left-hand side of equation (1) is
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proportional toω2, the square of the angular frequencyω, and the two effects are correlated
via theS-factor.

In layered structures, if we keep the lattice periodicity in the layer plane, a Fourier
analysis of the dynamics in terms of Bloch waves relatesω to the components of the wave
vector in the growth plane. Reconstruction effects involve band folding. Then we may find,
in the wave-vector representation (Brillouin zone (BZ)) of the phonon frequencies of the
heterostructure and at the limit of long wavelength where the elasticity theory applies, the
signature of vibration modes originating from the short-wavelength part of the dispersion
relations. At this limit, the waves may resolve the microscopic nature of the lattice. This is
to say that the folded part may carry with it vibrational modes which depend upon the size
of the interface BZ along the high-symmetry directions and consequently the extension of
the interface superstructure. Because of the folding, the vibrational modes become part of
the dispersion relations at the wavelength limit and thus the solution of the elasticity theory
equations. Let us now illustrate the above analysis by writing down the mathematics which
supports the physics that we have presented.

In what follows, we consider the case of a heterostructure constituted of two host
materials: A (B) represents the substrate (overlayer) with a lattice parameteraA (aB) and
an S-factor equal toSA (SB). The extension of the bidimensional BZ (2DBZ) associated
with the surface layer lattice is scaled by the wave-vector componentsgx ∼ π/ma and
gy ∼ π/na wherea is the lattice parameter,x andy are in-plane symmetry directions, and
m and n are integers which scale the corresponding extension of the unit cell associated
with the surface lattice stabilized by a superstructure with an in-plane(x, y) periodicity.
The S-correlated theory of MISs states that [10, 13]

ω2 ∝ SG−1 (2)

where

G ≡ 1/gxgy ∝ (mn)a2. (3)

If we write down such a relationship for each host material A and B and if we impose
phonon frequency matching between materials A and B, we end up with the fundamental
equation of theS-correlated theory [13] of MISs:

GBG−1
A = SBS−1

A (4)

where

SA,B = (C11/ρ)A,B (5)

and

GA ∝ (mn)a2
A (6)

GB ∝ (pq)a2
B. (7)

GA andGB represent the geometric factors of the substrate and of the overlayer respectively.
Let us recall that such a theory allowed us to predict interface superstructures for several
heterosystems [14, 15], such as SiO2 (Coesite)/Si, Ge/Si, a-Si/Ge0.2Si0.8, and Ge0.5Si0.5/Si.
Recently, we applied this theory to study, for SixGe1−x/Si heterostructures, the evolution
of the interface superstructure as a function of the Si compositionx of the alloy [13].

The lattice misfit between two materials A and B depends on the difference1 =
|aA − aB |. The dislocations which are created when the strain relief conditions on the
formation energy are fulfilled are characterized by a geometric feature, namely the associated
Burgers vector [16]. At a nanometric scale, the elementary quantity which we may define
is a ‘small’ Burgers vectorbe = aB − aA, if aB > aA: be represents a rather small fraction



Semiconductor heterointerfaces 5875

of the lattice parameters. In the case of perfect epitaxy, this corresponds to small epitaxial
dislocations. Because of a vernier effect, we end up with a network of epitaxial MDs which
are fairly parallel with a lattice spacing equal toL. The density of MDs is low when
1 is small: then ifbe → 0, one may expect thatL → ∞. Let us now assume that the
periodicity in the interface plane fulfils isotropic conditions; then we havem = n andp = q

and the MD network is a square lattice along the directionsx andy. The correlation theory
equation implies that the superstructure which stabilizes an interface and the associated MD
network must involve geometric and elastic density(S) factors as deduced from the elasticity
theory of dynamics. The dynamics is involved here because the stabilizing superstructures
are obtained subsequent to interface reconstructions where atomic displacements occur,
especially assisted by phonons. These reconstructions are strain correlated. Furthermore,
we assume that the corresponding periodicity of the interface unit cell must match the A and
B lattices via a vernier process. In this case, the atomic sites of the interface superstructure
can be considered as precursor sites where ‘nucleation’ centres for MDs (MDNCs) may be
formed when the formation energy of MDs becomes lower than that of misfit strain. This
will result in a network of parallel MDs. The lattice spacingL of this MD network is
usually obtained by applying the following geometric condition [11]:

(n1 + 1)aA = n1aB if aA < aB (8)

wheren1 is the superstructure parameter, given by the relationship

n1 = aA/(aB − aA). (9)

Equation (8) holds when the B lattice is under compression and the A lattice is under
extension. It states that aftern1 jumps on the B lattice andn1 + 1 jumps on the A lattice,
we may find in coincidence two interface sites belonging respectively to B and A. The MD
spacing is then calculated by using the value ofn1 and the Burgers vector. This above
method represents the geometric approach for MISs and MDNCs.

In what follows, we will extend the correlation theory [13–15] as follows. Our aim is
to determine the MISs which may stabilize the A/B interface in the misfit strain regime.
To do so, we introduce a superstructure parameternS and we express the geometric factors
GA andGB as functions ofnS as

GA ∝ (nS + 1)2a2
A (10)

GB ∝ n2
Sa

2
B with aB > aA. (11)

Equations (4) to (7) and equations (10) and (11) give the relationship

nS = aA(aB/
√

S − aA)−1 (12)

with

S = SB/SA and aB > aA. (13)

Equation (12) represents theS-correlated theory of MISs and of the related structural features
of the MD network confined to the A/B interface.

If S = 1, one can see thatnS = n1: the conditionS = 1 implies that we have a
matching of the elastic constant–density ratios. It is only in this case that the density
of MDNCs predicted by theS-correlated theory is equal to that given by the geometric
equation.

If the material A is under compression and B is under extension(aA > aB), the geometric
approach gives

n1 = aB/(aA − aB) (14)
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while the presentS-factor-correlated theory of MISs and the MD network gives

nS = aB/(aA

√
S − aB). (15)

If the matching condition is not fulfilled forS, thennS < n1: this means that the size of
the MIS and, consequently, the lattice spacings of MDNCs are smaller than those given by
the geometric approach.

3. Continuity conditions at heterostructure interfaces

3.1. General considerations

When we intend to make a heterostructure for a particular application in, e.g.,
microelectronics or optoelectronics, we start in practice by selecting a set of materials
suitable for the application aimed at. Then, we try to improve the interface quality of the
chosen heterostructure by using different methods, such as the incorporation of selected
impurities, annealing, or the insertion of an intermediate layer which may be an alloy of
the main host materials. Different experimental techniques have been developed in order to
study interfaces, to estimate their quality, to identify the nature of the defects present there
and to measure the density of interface defects.

Beside these methods, it is useful to develop a theoretical strategy which may enable
us to optimize the interface quality. As discussed before, this strategy may be based on
the definition of some criteria which involve host material features relevant to the growth
problem. In heterostructures where strains play a vital role in interface properties, we
have learnt from elasticity theory that the optimization process is successful if we end
up with geometric as well as elastic density properties matched at the interfaces of the
heterostructure. In what follows, we will present the optimization criteria for a polytype
heterostructure A/C/B.

3.2. The case of polytype heterostructures

Often, the insertion of an adequate intermediate layer C, between A and B, may improve the
interface quality. For such an A/C/B system, two heterointerfaces are created, namely A/C
and C/B. Each interface is characterized by a MIS parameternS (nS1 and nS2) and anS-
factor (S1 andS2). On a microscopic scale, heterointerfaces are stabilized by superstructures
which accommodate the lattices of two different materials, and any stable configuration must
correspond to a minimum of the energy of formation of the interface. This is to say that
nS must play the dominant role in the theory. TheS-correlated theory of MISs states that
nS must depend not only on the lattice parameters but also on theS-factors. Within the
framework of this theory, we may optimize the interface quality by choosing A, B and C
such that the following continuity condition is fulfilled bynS :

nS1 = nS2. (16)

In principle, the best optimization which we may obtain must meet the following continuity
condition for theS-factors:

S1 = S2 = 1 (17)

for the same conditions as for obtaining equation (16). However, and depending on the
heterostructure, it may not be always possible to fulfil equations (16) and (17) at the same
time and for the same conditions; in the case of polytype heterostructures, the problem is
complex because we then have to match four parameters which are assumed to keep their
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bulk values without any fitting procedure. Moreover, we know little about the effect of a
heterointerface on, e.g., the elastic properties of the host materials. We also know little about
the dependence of the alloy properties on the intrinsic properties of the alloy components,
and often a linear interpolation strategy is used: we are here facing the problem of the
in-heterostructure or in-alloy values of any physical parameter involved in the theory. If
we aim to describe elasticity-based processes in the neighbourhood of heterointerfaces, one
question that we must answer is that of how to choose an adequate strategy for estimating,
if necessary, the modification of bulk parameters in considering the heterostructure. If
we form a ternary alloy, such as Cd1−xMnxTe, we may consider that its properties result
from the coexistence of two solid phases, namely CdTe and MnTe. However, we must
bear in mind that these two phases interact. This interaction may involve, e.g., electronic,
electrostatic or elastic fields which may trigger a matching of their properties. For example,
we may be concerned by the evolution of the elastic properties of a soft phase interacting
with a stiffer phase, this evolution being induced by a mechanism of minimization of the
formation energy of their interface. The study of these problems is still in its infancy.

Facing the state of art in this field, our optimization strategy will be based on an exact
fulfilling of equation (16) while we must check that equation (17) is nearly verified without
any fitting procedure for the bulk values of the parameters involved in the theory.

Let us now consider that our sample is probed with experimental tools which integrate
a large part of the lattice: this is for example the case for the experimental conditions of the
determination of elastic constants based on the use of ultrasonic waves with wavelengths of
the order of∼10−2 cm. The two interfaces, as present in the heterostructure A/C/B, can then
be ‘seen’ at the same time during the same run. The measured value may then be considered
as an averaged value through the part of the sample including the two interfaces. We are
then entitled to replace the two interfaces by an effective medium which is characterized
by anS-factor which is averaged over the two interfaces by the following simple averaging
rule:

Saverage = (S1 + S2)/2. (18)

Saverage corresponds in fact to a reference interface. The concept of a reference medium
has been used in [11] for the definition of the spacing of MDs. The continuity condition
for this reference interface is

Saverage = 1. (19)

Equations (16), (17) and (19) provide the continuity conditions which enable us to optimize
the choice of the heterostructure with respect to the heterointerface quality. We can take
advantage of these continuity conditions in two fields relevant to heterostructures: the first
one concerns the growth physics aspect while the second one concerns the in-heterostructure
materials physics.

(i) The first aspect emphasizes the interface quality by optimizing the choice of the host
materials of the heterostructure. Having selected a set of host materials and assumed the
bulk values for all of the parameters involved, we must check to which point these conditions
are fulfilled. If necessary, we can investigate the mechanisms which may improve the fit of
the continuity conditions. If, e.g., C is an alloy which, when inserted in the heterostructure
A/B, tends to improve the interface quality, we can seek self-consistently for the alloy
composition which optimizes the system with respect to the continuity conditions. This
aspect has been developed elsewhere [10].

(ii) The second aspect is related to the in-heterostructure materials physics. It is worth
considering it because these continuity conditions enable us to establish a relationship
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between the different interacting host materials as present in the heterostructure: this has
consequences for the features of the host materials relevant to the problem considered,
as these features are now correlated via (16), (17) and (19) for optimization needs. In the
framework of theS-correlated theory of MISs, the relevant features are the lattice parameter
a, the elastic constantC11 and the densityρ. We can then take advantage of the continuity
conditions to calculate the in-heterostructure value of the relevant host material features.

In what follows, we will concentrate on the second aspect, although the first one is in
fact inherent to the self-consistent procedure.

4. Application to heterostructures with alloyed layers

4.1. Continuity conditions and elastic constant determination

In what follows, we present the strategy on the basis of which we assess our approach,
to gain some insight into the determination of the elastic constants of in-heterostructure
materials. To build up a heterostructure, we use some selected host materials. An efficient
use of this selection in the heterosystem often relies on a good characterization of their
relevant physical properties before and after their incorporation: within the framework of
the S-correlated theory of MISs, these are the lattice parameter, the density and the elastic
constant. In the heterostructure, as heterointerfaces are created, this implies that the bulk
values of these quantities may shift toward in-heterostructure values. As we may guess,
this problem lies at the very heart of growth physics. Good growth conditions must aim
to produce high-quality heterointerfaces through the matching of the host material features.
This matching may be aimed at when selecting the host materials or it may be triggered
during the growth process; the presence, in the heterostructure, of an alloy layer may result
from the insertion of such a layer between two host materials or may be due to interfacial
mixing.

In our approach, the heterointerface quality is optimized by applying continuity
conditions fornS andS throughout the whole system. In order to demonstrate the validity
and the usefulness of our method, we apply it to two polytype heterostructures, namely
CdTe/Cd1−xZnxTe/ZnTe and CdTe/Cd1−xMnxTe/MnTe. The following investigation will
concentrate on the elastic constant parameterC11 which is involved in theS-correlated
theory of MISs.

4.2. The case ofCdT e/Cd1−xZnxT e/ZnT e

The elastic constants of CdTe and ZnTe are well known: e.g., we haveC11(CdTe) =
0.533× 1012 dyn cm−2 and C11(ZnTe) = 0.713× 1012 dyn cm−2. Their densities and
their lattice parameters are respectively equal toρ = 5.87 g cm−3, a = 6.482 Å and
ρ = 5.636 g cm−3, a = 6.1 Å. The lattice mismatch is equal to 6%. By choosing a system
constituted of well characterized host materials, we aim to demonstrate the validity of our
approach and to answer the following question: to what extent are the continuity conditions
fulfilled when we use selected values ofC11, ρ and a without any fitting? Moreover,
we are interested in this heterostructure because, as long as we concentrate on the elastic
constant, such a behaviour has been determined in [4] for the alloy Cd1−xZnxTe for a zinc
concentration equal tox = 0.48.

The insertion (or the formation) of an intermediate alloy layer, such as Cd1−xZnxTe,
into CdTe/ZnTe may improve the lattice matching between these host materials. This
creates two heterointerfaces, namely the alloy/ZnTe the CdTe/alloy interfaces. Thanks to
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the molecular beam epitaxy (MBE) technique, it is now possible to grow Cd1−xZnxTe on
different substrates with a high crystalline quality [17, 18]. It is also possible to grow by
MBE ultrathin ZnTe layers in CdTe, and the morphology of the pseudomorphic layers has
been characterized by high-resolution electron microscopy [19]. At the heterointerface, the
ZnTe lattice is in strong extension and the CdTe lattice is in weak compression. Different
configurations may be assumed for the alloy layer. (i) The first one considers a homogeneous
alloy with an elastic constantC11 obtained by applying Vegard’s law to CdTe and ZnTe.
One knows that, depending on growth conditions, ZnTe islands may form on the CdTe
surface. Even in this case, the system may reach such a configuration after relaxation and
interdiffusion processes triggered by matching requirements. (ii) The second configuration
may consist in an inhomogeneous two-phase intermediate layer of unrelaxed ZnTe and CdTe
islands.

Figure 1. Variations of the MIS parameternS (N, �) andS-average (◦) as functions of the Zn
composition of the Cd1−xZnxTe intermediate layer of the CdTe/(Cd, Zn)Te/CdTe heterostructure.
The solid-symbol curves (N, �) are respectively associated with the interfaces (Cd, Zn)Te/CdTe
and (Cd, Zn)Te/ZnTe. The continuity conditions correspond (i) to the crossing of curves marked
with N and�, and (ii) toSaverage = 1.

In what follows, we consider that the first configuration prevails for the intermediate
layer. We have calculatedS andnS , for each heterointerface, by choosing the values of the
relevant parametersa, C11 andρ as follows: (i) for each layer (CdTe, ZnTe), unchanged bulk
values are assumed; and (ii) for the alloy, a linear interpolation between CdTe and ZnTe is
used. The results are represented in figure 1. We discover that the continuity condition for
nS (equation (17)) is fulfilled forx = 0.48. This corresponds to the alloy of composition
Cd0.52Zn0.48Te considered in [4]. The corresponding MIS is equal tonS

∼= 8. At this
composition, theS1- andS2-values are approximately equal to 1 andSaverage

∼= 1.018. One
can see that the continuity condition forSaverage is fulfilled with a precision of∼2% for
x = 0.48 when the bulk values ofa, C11 andρ are used. The corresponding alloy value of
C11 is equal to 0.62× 1012 dyn cm−2, in agreement with the value(0.6 × 1012 dyn cm−2)

reported in [4] for 296 K and at atmospheric pressure. We then conclude that the bulk values
of a, C11 and ρ for CdTe and ZnTe fulfil the continuity condition fornS when an alloy
layer of Zn compositionx = 0.48 is inserted: this composition is the one which has been
aimed at in [4]. In previous work [10] on the heterostructure GaSb/GaSbxAs1−x/GaAs, we
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have also found that the continuity conditions were fulfilled for an Sb composition equal to
x = 0.57 and we discovered that the corresponding alloy composition has been aimed at in
a MBE experiment [8].

We also found that the continuity condition forSaverage is exactly fulfilled forx = 0.43.
We may then conclude that an intermediate compositionx between 0.43 and 0.48 will
provide a heterostructure with heterointerfaces matching the continuity conditions with a
high degree of precision.

In the above application, we have used the bulk values of the host material parameters.
The ensuing conclusion is that, in particular, the bulk values ofC11 for CdTe and ZnTe,
when used in the heterostructure, enable us to verify the continuity conditions fornS and
Saverage. We also found that these two conditions are nearly, but not exactly, fulfilled for
the same Zn composition.

Figure 2. The same as figure 1, but for the CdTe/(Cd, Mn)Te/MnTe heterostructure.

4.3. The case ofCdT e/Cd1−xMnxT e/MnT e

MBE has been used to grow zinc-blende MnTe films on CdTe [20]. The insertion of
an intermediate alloy layer of Cd1−xMnxTe may be used with the aim of improving the
CdTe/MnTe interface quality, besides inducing new properties by incorporating the magnetic
ions Mn in CdTe. Moreover, even in the binary heterostructure CdTe/MnTe, one may
expect to have an alloyed transitional layer due to interface mixing. In such a system,
two heterointerfaces are involved. In [4], the elastic constants of Cd1−xMnxTe have been
determined and the values are given for three Mn compositions,x = 0.06, 0.45 and 0.52.
For the highest values ofx, C11 is equal to 0.51× 1012 dyn cm−2. If one assumes Vegard’s
law, the alloy values of, e.g.,C11, given in [4], may be obtained by using for MnTe a value
of C11 equal to 0.49× 1012 dyn cm−2.

In applying theS-correlated theory of MISs and the consequent continuity conditions
to this heterostructure, we aim to answer the following question: can we optimize the
CdTe/MnTe interface with the transitional alloy layer considered and, if this is possible,
what are the corresponding correlated values of the Mn composition and of the elastic
constantC11 of the alloy? This problem is the inverse of the one considered in subsection
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4.2. Here, we start off by assuming that the continuity conditions are fulfilled and we intend,
among other things, to determine the in-heterostructure value of the elastic constantC11 of
the alloy and, eventually, the in-heterostructure value ofC11 of the zinc-blende phase of
MnTe.

We have carried out a self-consistent procedure which involves the continuity conditions
for nS , S, and the elastic constantC11 of MnTe. The results are represented in figure 2.
We can see that the continuity condition fornS is fulfilled for a Mn composition
x ∼= 0.53, where the crossing ofnS1 and nS2 occurs for nS

∼= 26. Moreover, for
this concentration, the continuity condition forSaverage is fulfilled. The value of the
elastic constantC11 of MnTe which enables us to achieve the self-consistent procedure
is C11

∼= 0.482×1012 dyn cm−2. If we assume that the elastic constantC11 of Cd1−xMnxTe
may be calculated by using a linear interpolation between CdTe and MnTe, we find, for
x = 0.534,C11

∼= 0.506× 1012 dyn cm−2. On the whole, our results are in good agreement
with those given in [4]. Let us recall that our strategy for determiningC11 is based on the
application of the continuity conditions for the heterointerfaces of the system under study.
From this point of view, we say that the calculated value ofC11 is the in-heterostructure
value ofC11 of the zinc-blende phase of MnTe.

5. Conclusion

The S-correlated theory of MISs [13–15] enables us to predict which superstructure may
stabilize the heterointerfaces of heterostructures where interface strains play a dominant role.
The extension of this theory to growth problems has led to the formulation of interface
continuity conditions involving the superstructure parameternS and the elastic constant-
density factorS as present in the elasticity theory of lattice dynamics. The application of
these conditions to the heterostructure field results in two issues.

(i) The first issue is relevant to growth physics: by selecting the host components
of a heterostructure in order to fulfil the continuity conditions, we may optimize the
heterostructure choice with respect to the interface quality.

(ii) The second issue is relevant to the physics of the materials involved in the
heterostructure: this is in practice done by carrying out a self-consistent procedure which
implies the fulfilling of the continuity conditions and an iteration process involving the host
material property to be determined.

We have applied our approach to two heterostructures, namely CdTe/Cd1−xZnTe/ZnTe
and CdTe/Cd1−xMnxTe/MnTe. The first one is considered in order to establish the ability
of the S-correlated theory of MISs and its consequent continuity conditions to properly
study growth and host materials physics problems. The second system is considered in
order to gain more insight into the elastic properties of the zinc-blende phase of MnTe.
We demonstrate that it is possible, by fulfilling the continuity conditions, to determine the
elastic properties of the host materials of the heterostructure. The results that we obtain
are in good agreement with the experimental results [4]. Moreover, our approach may
afford the possibility of reaching a better understanding of the in-heterostructure values of
the parameters relevant to theS-correlated theory of MISs. These latter may be not very
different from the bulk values: this is, e.g., the case for ZnTe-based heterostructure as we
find that, if we keep the bulk values of the elastic constantC11 of CdTe unchanged, we
may optimize the composition of the alloy Cd1−xZnxTe with the bulk value ofC11 of ZnTe.
Here, we deal with a host material (ZnTe) which is stiffer than the embedding material
(CdTe). The situation seems to be different for the MnTe-based heterostructure, as we may
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expect that MnTe will be softer than CdTe. The point is that the in-heterostructure shifts of
the elastic properties of the host materials do indeed depend on their relative bulk values.
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